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Abstract Convective aggregation refers to the clustering of convective events and occurs on a wide range
of spatial scales. It has been suggested that the behavior of convective aggregation may change under global
warming, with potential implications for future changes in precipitation extremes. Here, convective regions

of the tropics are defined from a percentile threshold on gridded daily precipitation data and used to quantify
large-scale convective aggregation in an ensemble of global climate models. Applying three separate indices for
aggregation, it is found that large-scale convective aggregation increases in 17 of the 19 analyzed models under
future warming. However, aggregation is found not to be correlated with tropical-mean precipitation extremes,
either climatologically or with respect to the sensitivity to warming. The large model spread in aggregation
indices across the ensemble suggests the possible utility of large-scale convective aggregation as a target for
model evaluation.

Plain Language Summary Rainfall in the tropics is not evenly distributed, rather it occurs in
clusters of clouds of various sizes and shapes, from a line of thunderstorms to “superclusters” spanning
thousands of km. The size and spatial distribution of these clusters are hypothesized to influence the frequency
and intensity of heavy rainfall in the tropics. In this study, we develop a method for quantifying the amount of
clustering in the tropics, and we investigate whether it is projected to change in the future in a suite of state-
of-the-art climate models. Almost all the models project increases in clustering in the future, but, surprisingly,
a model's projection of clustering does not seem to affect its projection of changes to heavy rainfall. The
results suggest that effects other than clustering play a dominant role in determining the range of heavy rainfall
outcomes projected by climate models.

1. Introduction

Organized convection in the tropics strongly affects radiative feedbacks, the large-scale circulation and moisture
distribution, and the hydrological cycle (Hartmann et al., 1984). Understanding how the organization of convec-
tion might change under global warming is therefore crucial to understanding the future large-scale climate.
Organized deep convection is characterized by multiple deep convective cells combining to form coherent
structures such as a squall lines (~100 km; Houze, 1977), mesoscale convective complexes (~100-1000 km;
Maddox, 1980), or tropical cyclones (~1,000 km; Chavas & Emanuel, 2010). On even larger scales, organization
can include the clumping and clustering of these convective systems and their associated precipitation. Such clus-
tering, which we will refer to as “large-scale convective aggregation”, may be associated with long-lived “super-
clusters” (~10,000 km; Mapes & Houze, 1993), or stationary features such as the intertropical convergence zone.

Recent studies have suggested that changes in the degree of convective organization at various scales may be
an important driver of future changes in precipitation extremes (e.g., Bao et al., 2017; Pendergrass et al., 2016;
Pendergrass, 2020). In this paper, we investigate this hypothesis by examining the relationship between large-
scale convective aggregation and tropical precipitation extremes in historical simulations and future projections
using 19 global climate models (GCMs) from Phase 5 of the Coupled Model Intercomparison Project (CMIPS5).

Interest in convective aggregation has recently grown out of studies using cloud-permitting models in the ideal-
ized setting of radiative-convective equilibrium (RCE; Bretherton et al., 2005; Held et al., 1993; Tompkins &
Craig, 1998). Simulations of RCE in a homogeneous domain with no imposed shear or lateral energy trans-
port were found to spontaneously develop organization in a process termed “‘self-aggregation”. In regional-scale
domains, the aggregated state is characterized by a single region of convective activity surrounded by a dry,
quiescent atmosphere, and its development is driven by feedbacks between convection, surface fluxes, and
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radiation, with longwave radiation being particularly important (Wing & Emanuel, 2014). Simulations of RCE
in both global or quasi-global convection-permitting models (Wing & Cronin, 2016; Wing et al., 2018) and in
GCMs (Popke et al., 2013; Reed et al., 2015) show evidence of self-aggregation on planetary scales, producing
multiple convective regions spanning thousands of km across. While GCMs do not resolve the convective-scale
processes that lead to mesoscale organization, their tendency to produce large-scale convective aggregation has
been argued to be a result of similar feedbacks to those operating in cloud-permitting models (Wing et al., 2017).
These feedbacks are also thought to play an important role in driving observed convective systems such as tropi-
cal cyclones (Carstens & Wing, 2020) and the Madden-Julian Oscillation (Arnold & Randall, 2015).

While self-aggregation in both cloud-permitting models and GCMs is known to be sensitive to details of the
model configuration such as the dynamical core, parameterizations, domain size, and geometry, the tendency
for the simulated atmosphere to aggregate is often found to increase with temperature (Bony et al., 2016; Wing
& Emanuel, 2014; Wing et al., 2017). Furthermore, researchers suggest that changes in the degree of aggrega-
tion of convection may be related to changes in the intensity of precipitation extremes under global warming
(Pendergrass, 2020). Increasing trends in precipitation extremes are observed (Westra et al., 2013) and projected
by GCMs (Bador et al., 2018), but the sensitivity of precipitation extremes to warming varies across models,
particularly in the tropics (O’Gorman, 2012, 2015). While it is known that this model spread is related to the
dynamics of precipitation extreme events (O’Gorman & Schneider, 2009), the precise mechanisms that drive it,
and the possible role played by convective organization, remains unclear. Studies have highlighted the importance
of the degree of aggregation in determining precipitation extremes (Bao & Sherwood, 2019) and their sensitivity
to warming (Bao et al., 2017) at various scales in idealized models. In particular, a number of global RCE or near
global RCE studies have found that precipitation extremes, defined at a gridpoint level, appear to be sensitive
to measures of convective aggregation, defined on large scales (Pendergrass et al., 2016). This motivates us to
examine whether differences in large-scale convective aggregation might be related to precipitation extremes in
more realistic simulations as part of CMIP5.

Observations also point to a role for convective aggregation in influencing the large-scale atmospheric state.
For example, Tobin et al. (2013) found using satellite observations that regions with a higher degree of convec-
tive aggregation are accompanied by a drying of the mean state atmosphere (see also Holloway et al., 2017).
However, observing trends in convective aggregation remains challenging due to the limited extent and quality
of historical records and the large variability and low frequency of events most relevant for aggregation (Jones
& Carvalho, 2006; Knutson et al., 2010). Nevertheless, Tselioudis et al. (2010) used satellite observations to
identify trends toward an increased frequency of organized convection with warming, while Zelinka and Hart-
mann (2010) showed that the fractional anvil cloud area decreases as a response to increases in tropical mean
temperature, which is another feature commonly associated with self-aggregation in simulations of RCE (Bony
et al., 2016; Emanuel et al., 2014). Finally, Tan et al. (2015) found that a large fraction of the observed trends
in regional precipitation in the tropics could be associated with the change in frequency of organized convec-
tion. However, trends in precipitation extremes have not yet been associated with changes in the organization of
convection based on observations.

In this study, we seek to bridge the gap between idealized studies relating convective aggregation to precipitation
extremes in RCE and the observational work described above by investigating large-scale convective aggregation
in simulations with comprehensive GCMs. Specifically, we use a precipitation rate percentile to define convec-
tively active regions (Bao et al., 2017; Pendergrass et al., 2016) in the tropics and apply it to quantify large-scale
convective aggregation in an ensemble of CMIP5 models and in observations from the Global Precipitation
Climatology Project (GPCP). Based on this quantification, we investigate how large-scale convective aggregation
is projected to change in the future, and what implications such changes may have for precipitation extremes.

2. Simulations and Precipitation Extremes

Our analysis is based on 19 GCMs participating in CMIP5 (Table S1 in Supporting Information S1; Taylor
et al., 2012), chosen by selecting one model from each modeling center for which the desired data was avail-
able. We used 30-year periods from the historical (1970-2000) and representative concentration pathway 8.5
(RCP8.5; 2070-2100) scenarios to represent historical and future climates, respectively. Precipitation extremes
and large-scale convective aggregation were quantified based on daily precipitation accumulations in the tropical
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region (30°S-30°N). To ensure comparability across models, we applied a first-order conservative interpolation
following Jones (1999) to a common 2.8 X 2.8° grid prior to the analysis. Differences between the historical and
RCP8.5 scenarios may be expressed per kelvin warming by dividing by the change in tropical- and time-mean
surface air temperature between the relevant periods. Finally, as an observed reference point for the results from
the historical climate, satellite-based estimates of daily precipitation from the GPCP (v1.3; Huffman et al., 2001)
for the years 2007-2017 were regridded to the same 2.8 X 2.8° grid and analyzed using the same methodology.

To relate tropical precipitation extremes to the degree of large-scale convective aggregation, we define an overall
metric of precipitation extremes across the tropics. This may be done in a number of ways. Here we take the
annual maximum daily precipitation accumulation at each gridpoint (Rx1day; Alexander et al., 2019; Zhang
et al., 2011) and then take the time mean over the relevant 30-year period and the spatial mean over the tropical
region. We refer to this metric as the tropical-mean Rx1day. Since the tropical-mean Rx1day tends to smear
out extremes through spatial averaging, we also test extremes based on a percentile calculated over all tropical
gridpoints (99th, 99.9th, or 99.99th). Conclusions about the relationship between precipitation extremes and
aggregation are unaffected by using the precipitation percentile approach or taking a longer timescale extreme
(Rx5day). We plot results for changes in tropical-mean precipitation extremes as a percentage change per kelvin
tropical warming, but once again, our main conclusions remain the same if we use absolute changes in precipita-
tion extremes rather than relative ones.

Figures 1a—1d shows the time-mean value of Rx1day in the historical climate for three models with varying inten-
sity of precipitation extremes and for the GPCP observations. The magnitude of precipitation extremes varies
distinctly between models, and this variation is well-captured by the tropical-mean Rx1day metric (Figure 2a).
Overall, the model spread in tropical-mean Rx1day in the historical climate is considerable; the interquartile range
is ~33-48 mm day~!, encompassing the GPCP observational estimate. But this range widens to ~20-82 mm
day~! when all 19 models are considered.

As for its climatological value, the fractional change in the tropical-mean Rx1day with warming also varies
considerably across models (Figure 2b), with an interquartile range spanning ~4.2%-7.5%/K, and a maximum
range spanning ~1%-12.5%/K. This is consistent with the recent analysis of Bador et al. (2018) using a larger
ensemble of CMIP5 models. Notably, the models that have the largest climatological value of the tropical-mean
Rx1day (e.g., bcc-csm1-1) are not necessarily the same models that produce the largest fractional sensitivity
per kelvin warming (e.g., IPSL-CM5A-MR). Further, unlike for the climatology, the spatial pattern of changes
in Rx1day with warming also varies considerably across models (Figures le—1g), demonstrating a limitation in
using a single tropics-wide metric for changes in precipitation extremes. Despite this caveat, the large model
spread in tropical-mean Rx1day and its changes with warming imply fundamental differences in the representa-
tion of precipitation extremes across the ensemble. Our aim is to determine whether this model spread may be
explained by differences in large-scale convective aggregation in the simulations.

3. Quantifying Large-Scale Convective Aggregation

In order to quantify the degree of large-scale convective aggregation across the tropics, we first define whether
a given gridpoint is “convective”. Previous studies have used a range of variables to define regions of active
convection such as cloud amount, vertical velocity, outgoing longwave radiation, and precipitation (e.g., Hollo-
way, 2017; Tobin et al., 2012; Tompkins & Semie, 2017). To facilitate comparison with precipitation extremes,
here we take gridpoints for which the daily precipitation rate exceeds a threshold value to be convective grid-
points. Since the overall precipitation intensity may vary across models and with climate, we use a separate
threshold for each simulation and for the observations to allow for a more robust quantification of large-scale
convective aggregation. Specifically, the precipitation threshold is defined as the 97th percentile precipitation
rate (including all tropical gridpoints) for each GCM and respective scenario and for the observations. Choosing
such a threshold ensures that we identify high precipitation rates in relation to each model's dynamics and that we
roughly pick out the same convective area fraction across the tropics each day. Comparing a similar day-to-day
area fraction greatly reduces bias in the aggregation assessment (Tobin et al., 2012).

Convective aggregation may loosely be described as the “coming together” or clustering of convective regions;
however, it does not currently have a strict quantifiable definition (Retsch et al., 2020; Weger et al., 1992). Never-
theless, it is generally agreed that the degree of convective aggregation increases with the size and proximity of
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Figure 1. (a—c) Time-mean Rx1day in the historical (1970-2000) scenario and (e-g) change in time-mean Rx1day between the historical and RCP8.5 (2070-2100)
scenarios for three models taken from Phase 5 of the Coupled Model Intercomparison Project (CMIPS5) as labeled. Panel (d) gives observational estimate of time-mean
Rx1day according to Global Precipitation Climatology Project for the years 2007-2017.
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Figure 2. Box-whisker plots of (a) tropical-mean Rx1day in the historical
(1970-2000) scenario and (b) fractional increase in tropical-mean Rx1day
between the historical and RCP8.5 (2070-2100) scenarios expressed per kelvin
of tropical warming for the Coupled Model Intercomparison Project (CMIPS5)
ensemble. Example models from Figure 1 are shown as labeled, and Global
Precipitation Climatology Project observations are shown in panel (a) in green.

contiguous convective regions (Tobin et al., 2012; White et al., 2018). More
generally, convective organization may also depend on other considerations
such as the shape, pattern, timing, and general spatial distribution of convec-
tive regions (Pendergrass et al., 2016; Retsch et al., 2020).

In this study, we consider contiguous regions of convection as 8-connected
convective gridpoints, or single gridpoints of convection if there are no neigh-
boring connections, and we use three simple metrics of varying approaches to
quantify the large-scale aggregation of convection in the tropics as a whole.
For a fixed area fraction of convection, we expect aggregation to increase
with the size and decrease with the number of contiguous convective regions.
Therefore, as the first measure of aggregation, we analyze the Precipitation
Weighted Area Distribution (PWAD). The PWAD describes the fraction of
tropical precipitation that falls in contiguous convective regions of a given
size. Here size is quantified by the effective radius rey = \/a/_n', of a contin-
uous convective region of area a. A shift in the PWAD from smaller to larger
values of effective radius corresponds to an increase in aggregation.

A second, more quantitative, measure of large-scale convective aggregation
is given by the average number of contiguous convective regions in a daily
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Figure 3. Spatial distribution of convective regions for the (a—d) minimum, (e~h) median, and (i-1) maximum value of Radar Organisation MEtric (ROME) from daily
scenes in the historical scenario for the same models as in Figure 1 and for the Global Precipitation Climatology Project observations as labeled. Each panel includes
value of area fraction of convective regions in the scene (A), Number Index (N), ROME (R), and ROME based on the eight largest contiguous convective regions (Rn;
in red). ROME is given in units of 10° km?2.

tropical scene, which we refer to as the Number Index. Considering that our definition identifies convection as
occupying roughly the same area fraction of the tropics each day, a decrease in the number of contiguous convec-
tive regions is likely to correspond to an increase in the average size of these regions and an increase in the degree
of aggregation.

Finally, as a third measure of large-scale convective aggregation, we use a slightly more sophisticated aggregation
index, the Radar Organisation MEtric (ROME), which considers the average size, proximity, and size distribution
of contiguous convective regions (Retsch et al., 2020). As its name suggests, ROME was originally designed for
analysis of radar observations, but we find that it works well for our purposes. ROME assesses organisation by
defining “connections” between pairs of continuous convective regions and assigning a weight to each pair that
increases with their respective areas and decreases with their separation distance. Specifically, the weight is equal
to the area of the larger contiguous convective region plus a contribution from the smaller contiguous convective
region that depends on the separation distance. For a given scene, ROME is then taken as the average value of the
weights for all pairs of contiguous convective regions in the tropics. ROME is measured in units of area, and its
value may be decomposed into a contribution from the mean area of contiguous convective regions and a contri-
bution that depends on the distribution of sizes of and interaction between different contiguous convective regions
(Retsch et al., 2020). An increasing value of ROME corresponds to a higher degree of aggregation.

Analysis of daily precipitation distributions in different models reveals that the aggregation assessment from the
Number Index and ROME can sometimes be skewed by a large number of isolated single gridpoints of convec-
tion. Such “gridpoint storms” are known non-physical features of GCM-simulated precipitation distribitions
(Pendergrass & Hartmann, 2014). To account for the potential bias introduced by such effects, ROME was also
calculated based on the eight largest contiguous convective regions in each daily scene (shown in red in Figure 3).

Examples of daily scenes from different GCMs under the historical scenario and from the GPCP observations
reveal that the various aggregation indices correspond well to a subjective visual assessment of large-scale
convective aggregation (Figure 3). As aggregation according to ROME and the Number Index increase, the size
of contiguous convective regions becomes larger, and their distribution more clustered. Both the observations
and GCMs exhibit a wide range of ROME values, demonstrating substantial temporal variability in large-scale
convective aggregation across the tropics.
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Figure 4. (a) Precipitation-weighted area distribution (PWAD) in the historical scenario and for the Global Precipitation Climatology Project (GPCP) observations
(green) and (b) difference in PWAD between the RCP8.5 and historical scenarios. Black line gives ensemble mean and gray shading shows range of 90% of global
climate models (GCMs). Colored lines show example models as labeled in (c). PWAD is calculated using bins with width equal to the mean effective radius of tropical
gridboxes. (¢) Mean Number index plotted against mean Radar Organisation MEtric (ROME) for historical (base of the arrow) and RCP8.5 (tip of the arrow) scenario
for each GCM in the ensemble. Dots are used for the GPCP observations and for GCMs with little change in aggregation.

All three approaches analyzed reveal considerable model spread in the simulated large-scale convective aggrega-
tion in the historical scenario. The ensemble-mean PWAD peaks at 7, in the range 343515 km and is very simi-
lar to that observed by GPCP, but certain models exhibit substantially different behavior (Figure 4a). For example,
FGOALS-g2 generates much greater numbers of small contiguous convective regions, while bcc-csm1-1 tends to
predominantly generate contiguous convective regions of medium size. Additionally, the mean values of ROME
and Number Index in the historical scenario vary from roughly half to almost double that of the GPCP observa-
tional estimate (Figure 4c). This large model spread points to the possible utility of such metrics of large-scale
convective aggregation for model evaluation.

We now consider how aggregation changes under warming. All metrics agree that the same 17 of the 19 consid-
ered GCMs exhibit an increase in the degree of large-scale convective aggregation in the RCP8.5 scenario. In
these GCMs, The PWAD tends to shift from smaller to larger contiguous convective regions (Figure 4b), the
average number of objects in each daily scene decreases (Figure 4c), and the average ROME value increases with
warming (Figure 4c). In the remaining two models, IPSL-CM5A-MR shows a decrease in aggregation accord-
ing to all metrics, while FGOALS-g2 shows small changes in aggregation whose sign depends on the choice of
metric. We also repeated these calculations with precipitation thresholds for convective regions based on differ-
ent percentiles (95th, 97th, and 99th percentile) and for ROME calculated using only the largest 8 contiguous
convective regions, and while the absolute value of the aggregation metrics is altered, the trend with warming
is consistent with the results shown here. An important limitation of the aggregation indices is that they do not
distinguish between different forms of aggregation, for example, clustering of individual convective gridpoints
versus changes to typical large scale features such as the ITCZ, squall lines, or large storms. From analyzing
daily scenes of convection (not shown here), most models appear to experience a mix of aggregation features
on various spatial scales. However, a few models seem to predominantly favor one type of aggregation, often in
conjunction with exhibiting distinctly different climatological convection features.

4. Relationship Between Large-Scale Convective Aggregation and Precipitation
Extremes

Previous researchers have found changes in convective aggregation to be an important determinant of changes
in precipitation extremes in idealized simulations of RCE (e.g., Bao et al., 2017). However, our analysis reveals
no statistically significant relationship between the degree of large-scale convective aggregation, as measured by
ROME, and precipitation extremes, as measured by tropical-mean Rx1day, for either their climatological values
(Figure 5a) or their changes with warming (Figure 5b) across the 19 GCMs considered. This result holds for
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warming.

any combination of the analyzed large-scale convective aggregation metrics and precipitation extremes metrics
described above. Thus while the intensity of precipitation extremes increases with warming for all models and
the degree of convective aggregation increases with warming in most models, our results do not support a role
for changes in large-scale convective aggregation in modulating precipitation extremes, at least at a tropics-wide
level.

5. Conclusions

We have examined projected changes to large-scale convective aggregation and precipitation extremes as simu-
lated by 19 GCMs under the RCP8.5 scenario. We have used a method to identify convective regions based on
a percentile precipitation threshold that ensures a roughly fixed fraction of the tropics is identified as convec-
tive. This method allows for a robust quantification of the degree of large-scale convective aggregation in the
tropics as a whole that is consistent across a range of metrics. Broadly consistent with previous RCE studies
(Bony et al., 2016; Wing et al., 2018), we find that, in most models, large-scale convective aggregation increases
with warming. However, we find no evidence that changes in aggregation are linked to changes in precipitation
extremes across the GCM ensemble, at least for our tropics-wide measures of aggregation and precipitation
extremes. This contrasts with previous studies of RCE, for which changes to convective aggregation appear to be
an important driver of changes in precipitation extremes under warming, at least in the context of experiments
with a single model (Bao et al., 2017; Pendergrass et al., 2016).

An important caveat to our work is that we examine convective aggregation in models that face challenges in real-
istically representing convection. As convection is parameterized in the models, they do not resolve the processes
that lead to organization of convection on mesoscales, and this may affect how they simulate large-scale convec-
tive aggregation. Indeed, we show that there is considerable model spread in the degree of large-scale convective
aggregation in the GCM ensemble, with some models displaying distinctly different aggregation behavior from
the bulk of the models and from the observations. In previous idealized studies, the choice of convection parame-
terization has been shown to have a large effect on large-scale convective aggregation (Bao et al., 2017), and this
provides one explanation for the anomalous behavior seen in some of the CMIP5 models. The representation of
large scale convective aggregation is also likely significantly impacted by how the models treat the interaction of
aggregation processes and convectively-coupled equatorial waves (Arnold & Randall, 2015). Further investiga-
tion into the specific parameterizations and model configurations relevant for large-scale convective aggregation
is needed to understand which model features promote or suppress aggregation (Moncrieff, 2019).

The large model spread in large-scale convective aggregation also suggests that it may provide a useful target for
model evaluation. While we provide a preliminary assessment of observed large-scale convective aggregation
using GPCP data, further work in quantifying the observed uncertainties are required before this could be used
for more formal model evaluation.
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While our results do not show a relationship between simulated tropical precipitation extremes and large-scale
convective aggregation for the tropics as a whole, the extent to which such relationships may exist at a regional
level, or for more specific measures of convective organization and precipitation extremes remains an open ques-
tion. Possible future work to address this question could include analysis of specific geographical areas with
distinct climatologies, and development of metrics that look at specific convective shapes (e.g., convergence
lines; Weller et al., 2017). Alternatively, the reasons for the lack of a tropics-wide relationship between precipita-
tion extremes and large-scale convective aggregation might be ascertained by tracking precipitation extremes in
individual storms or events that are impacted by convective aggregation (Pendergrass et al., 2016). Importantly,
preliminary analysis shows that 17 of the 19 models have statistically significant relationships between precip-
itation extremes and aggregation index on interannual timescales, with R? values for these relationships in the
range 0.4-0.7 (Figure S2 in Supporting Information S1). These intramodel relationships confirm that large-scale
aggregation is relevant to precipitation extremes in the CMIP5 ensemble, despite the absence of relationship
across models.

Other considerations for further investigation include analysis of the tropospheric humidity distribution. In RCE,
aggregation is characterized by an increased variance of humidity (Wing & Emanuel, 2014), and from both
simulations and observations, aggregation is accompanied by a drying of the mean state atmosphere (Holloway
et al., 2017). This suggests that simulated changes in large-scale convective aggregation may affect future projec-
tions of tropospheric humidity.
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